#arc158c. [arc158_c]All Pair Digit Sums

[arc158_c]All Pair Digit Sums

Problem Statement

For a positive integer xx, let f(x)f(x) denote the sum of its digits. For instance, f(158)=1+5+8=14f(158) = 1 + 5 + 8 = 14, f(2023)=2+0+2+3=7f(2023) = 2 + 0 + 2 + 3 = 7, and f(1)=1f(1) = 1.

You are given a sequence of positive integers A=(A1,ldots,AN)A = (A_1, \\ldots, A_N). Find sumi=1Nsumj=1Nf(Ai+Aj)\\sum_{i=1}^N\\sum_{j=1}^N f(A_i + A_j).

Constraints

  • 1leqNleq2times1051\\leq N\\leq 2\\times 10^5
  • 1leqAi<10151\\leq A_i < 10^{15}

Input

The input is given from Standard Input in the following format:

NN A1A_1 ldots\\ldots ANA_N

Output

Print sumi=1Nsumj=1Nf(Ai+Aj)\\sum_{i=1}^N\\sum_{j=1}^N f(A_i + A_j).


Sample Input 1

2
53 28

Sample Output 1

36

We have $\\sum_{i=1}^N\\sum_{j=1}^N f(A_i + A_j) = f(A_1+A_1)+f(A_1+A_2)+f(A_2+A_1)+f(A_2+A_2)=7+9+9+11=36$.


Sample Input 2

1
999999999999999

Sample Output 2

135

We have $\\sum_{i=1}^N\\sum_{j=1}^N f(A_i + A_j) = f(A_1+A_1) = 135$.


Sample Input 3

5
123 456 789 101 112

Sample Output 3

321