#arc128c. [arc128_c]Max Dot

[arc128_c]Max Dot

Problem Statement

Given are integers NN, MM, SS, and a sequence of NN integers A=(A1,A2,cdots,AN)A=(A_1,A_2,\\cdots,A_N).

Consider making a sequence of NN non-negative real numbers x=(x1,x2,cdots,xN)x=(x_1,x_2,\\cdots,x_N) satisfying all of the following conditions:

  • $0 \\leq x_1 \\leq x_2 \\leq \\cdots \\leq x_N \\leq M$,
  • sum1leqileqNxi=S\\sum_{1 \\leq i \\leq N} x_i=S.

Now, let us define the score of xx as sum1leqileqNAitimesxi\\sum_{1 \\leq i \\leq N} A_i \\times x_i. Find the maximum possible score of xx.

Constraints

  • 1leqNleq50001 \\leq N \\leq 5000
  • 1leqMleq1061 \\leq M \\leq 10^6
  • 1leqSleqmin(NtimesM,106)1 \\leq S \\leq \\min(N \\times M,10^6)
  • 1leqAileq1061 \\leq A_i \\leq 10^6
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM SS A1A_1 A2A_2 cdots\\cdots ANA_N

Constraints

Print the answer. Your output will be considered correct if its absolute or relative error is at most 10610^{-6}.


Sample Input 1

3 2 3
1 2 3

Sample Output 1

8.00000000000000000000

The optimal choice is x=(0,1,2)x=(0,1,2).


Sample Input 2

3 3 2
5 1 1

Sample Output 2

4.66666666666666666667

The optimal choice is x=(2/3,2/3,2/3)x=(2/3,2/3,2/3).


Sample Input 3

10 234567 1000000
353239 53676 45485 617014 886590 423581 172670 928532 312338 981241

Sample Output 3

676780145098.25000000000000000000