#arc117e. [arc117_e]Zero-Sum Ranges 2

[arc117_e]Zero-Sum Ranges 2

Problem Statement

How many different sequences of length 2N2N, A=(A1,A2,dots,A2N)A = (A_1, A_2, \\dots, A_{2N}), satisfy both of the following conditions?

  • The sequence AA contains NN occurrences of +1+1 and NN occurrences of \-1\-1.
  • There are exactly KK pairs of ll and rr (1leqlleqrleq2N)(1 \\leq l \\leq r \\leq 2N) such that Al+Al+1+cdots+Ar=0A_l + A_{l+1} + \\cdots + A_r = 0.

Constraints

  • 1leqNleq301 \\leq N \\leq 30
  • 1leqKleqN21 \\leq K \\leq N^2
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK

Output

Print the number of different sequences that satisfy the conditions in Problem Statement. The answer always fits into the signed 6464-bit integer type.


Sample Input 1

1 1

Sample Output 1

2

For N=1,K=1N = 1, K = 1, two sequences below satisfy the conditions:

  • A=(+1,1)A = (+1, -1)
  • A=(1,+1)A = (-1, +1)

Sample Input 2

2 3

Sample Output 2

2

For N=2,K=3N = 2, K = 3, two sequences below satisfy the conditions:

  • A=(+1,1,1,+1)A = (+1, -1, -1, +1)
  • A=(1,+1,+1,1)A = (-1, +1, +1, -1)

Sample Input 3

3 7

Sample Output 3

6

For N=3,K=7N = 3, K = 7, six sequences below satisfy the conditions:

  • A=(+1,1,+1,1,1,+1)A = (+1, -1, +1, -1, -1, +1)
  • A=(+1,1,1,+1,+1,1)A = (+1, -1, -1, +1, +1, -1)
  • A=(+1,1,1,+1,1,+1)A = (+1, -1, -1, +1, -1, +1)
  • A=(1,+1,+1,1,+1,1)A = (-1, +1, +1, -1, +1, -1)
  • A=(1,+1,+1,1,1,+1)A = (-1, +1, +1, -1, -1, +1)
  • A=(1,+1,1,+1,+1,1)A = (-1, +1, -1, +1, +1, -1)

Sample Input 4

8 24

Sample Output 4

568

Sample Input 5

30 230

Sample Output 5

761128315856702

Sample Input 6

25 455

Sample Output 6

0

For N=25,K=455N = 25, K = 455, no sequences satisfy the conditions.