#agc038f. [agc038_f]Two Permutations

[agc038_f]Two Permutations

Problem Statement

Snuke has permutations (P0,P1,cdots,PN1)(P_0,P_1,\\cdots,P_{N-1}) and (Q0,Q1,cdots,QN1)(Q_0,Q_1,\\cdots,Q_{N-1}) of (0,1,cdots,N1)(0,1,\\cdots,N-1).

Now, he will make new permutations AA and BB of (0,1,cdots,N1)(0,1,\\cdots,N-1), under the following conditions:

  • For each ii (0leqileqN10 \\leq i \\leq N-1), AiA_i should be ii or PiP_i.
  • For each ii (0leqileqN10 \\leq i \\leq N-1), BiB_i should be ii or QiQ_i.

Let us define the distance of permutations AA and BB as the number of indices ii such that AineqBiA_i \\neq B_i. Find the maximum possible distance of AA and BB.

Constraints

  • 1leqNleq1000001 \\leq N \\leq 100000
  • 0leqPileqN10 \\leq P_i \\leq N-1
  • P0,P1,cdots,PN1P_0,P_1,\\cdots,P_{N-1} are all different.
  • 0leqQileqN10 \\leq Q_i \\leq N-1
  • Q0,Q1,cdots,QN1Q_0,Q_1,\\cdots,Q_{N-1} are all different.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN P0P_0 P1P_1 cdots\\cdots PN1P_{N-1} Q0Q_0 Q1Q_1 cdots\\cdots QN1Q_{N-1}

Output

Print the maximum possible distance of AA and BB.


Sample Input 1

4
2 1 3 0
0 2 3 1

Sample Output 1

3

For example, if we make A=(0,1,2,3)A=(0,1,2,3) and B=(0,2,3,1)B=(0,2,3,1), the distance will be 33, which is the maximum result possible.


Sample Input 2

10
0 4 5 3 7 8 2 1 9 6
3 8 5 6 4 0 2 1 7 9

Sample Output 2

8

Sample Input 3

32
22 31 30 29 7 17 16 3 14 9 19 11 2 5 10 1 25 18 15 24 20 0 12 21 27 4 26 28 8 6 23 13
22 3 2 7 17 9 16 4 14 8 19 26 28 5 10 1 25 18 15 13 11 0 12 23 21 20 29 24 27 6 30 31

Sample Output 3

28