#agc036f. [agc036_f]Square Constraints

[agc036_f]Square Constraints

Problem Statement

Given is an integer NN. How many permutations (P0,P1,cdots,P2N1)(P_0,P_1,\\cdots,P_{2N-1}) of (0,1,cdots,2N1)(0,1,\\cdots,2N-1) satisfy the following condition?

  • For each ii (0leqileq2N1)(0 \\leq i \\leq 2N-1), N2leqi2+Pi2leq(2N)2N^2 \\leq i^2+P_i^2 \\leq (2N)^2 holds.

Since the number can be enormous, compute it modulo MM.

Constraints

  • 1leqNleq2501 \\leq N \\leq 250
  • 2leqMleq1092 \\leq M \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM

Output

Print the number of permutations that satisfy the condition, modulo MM.


Sample Input 1

2 998244353

Sample Output 1

4

Four permutations satisfy the condition:

  • (2,3,0,1)(2,3,0,1)
  • (2,3,1,0)(2,3,1,0)
  • (3,2,0,1)(3,2,0,1)
  • (3,2,1,0)(3,2,1,0)

Sample Input 2

10 998244353

Sample Output 2

53999264

Sample Input 3

200 998244353

Sample Output 3

112633322