#abc269h. [abc269_h]Antichain

[abc269_h]Antichain

Problem Statement

We have a rooted tree TT with NN vertices numbered 11 to NN. Vertex 11 is the root, and the parent of vertex ii (2leqileqN)(2 \\leq i \\leq N) is vertex PiP_i.

A non-empty subset SS of the vertex set V=lbrace1,2,dots,NrbraceV = \\lbrace 1, 2,\\dots, N\\rbrace of TT is said to be a good vertex set when it satisfies the following condition.

  • For every pair of different vertices (u,v)(u, v) in SS, the following holds: uu is not an ancestor of vv.

For each K=1,2,dots,NK = 1, 2, \\dots, N, find the number, modulo 998244353998244353, of good vertex sets with exactly KK vertices.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2 \\times 10^5
  • 1leqPilti1 \\leq P_i \\lt i
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN P2P_2 P3P_3 dots\\dots PNP_N

Output

Print NN lines. The ii-th line should contain the answer for K=iK = i.


Sample Input 1

4
1 2 1

Sample Output 1

4
2
0
0

For each 1leqKleqN1 \\leq K \\leq N, the good vertex sets of size KK are listed below.

  • K=1K=1: $\\lbrace 1 \\rbrace, \\lbrace 2 \\rbrace, \\lbrace 3 \\rbrace, \\lbrace 4 \\rbrace$.
  • K=2K=2: lbrace2,4rbrace,lbrace3,4rbrace\\lbrace 2, 4 \\rbrace, \\lbrace 3, 4 \\rbrace.
  • K=3,4K=3,4: There is none.

Sample Input 2

6
1 1 2 2 5

Sample Output 2

6
6
2
0
0
0

Sample Input 3

6
1 1 1 1 1

Sample Output 3

6
10
10
5
1
0

Sample Input 4

10
1 2 1 2 1 1 2 6 9

Sample Output 4

10
30
47
38
16
3
0
0
0
0