#abc255e. [abc255_e]Lucky Numbers

[abc255_e]Lucky Numbers

Problem Statement

You are given a sequence of N1N-1 integers S=(S1,S2,ldots,SN1)S = (S_1, S_2, \\ldots, S_{N-1}), and MM distinct integers X1,X2,ldots,XMX_1, X_2, \\ldots, X_M, which are called lucky numbers.

A sequence of NN integers A=(A1,A2,ldots,AN)A = (A_1, A_2, \\ldots, A_N) satisfying the following condition is called a good sequence.

Ai+Ai+1=SiA_i + A_{i+1} = S_i holds for every i=1,2,ldots,N1i = 1, 2, \\ldots, N-1.

Find the maximum possible number of terms that are lucky numbers in a good sequence AA, that is, the maximum possible number of integers ii between 11 and NN such that AiinlbraceX1,X2,ldots,XMrbraceA_i \\in \\lbrace X_1, X_2, \\ldots, X_M \\rbrace.

Constraints

  • 2leqNleq1052 \\leq N \\leq 10^5
  • 1leqMleq101 \\leq M \\leq 10
  • \-109leqSileq109\-10^9 \\leq S_i \\leq 10^9
  • \-109leqXileq109\-10^9 \\leq X_i \\leq 10^9
  • X1ltX2ltcdotsltXMX_1 \\lt X_2 \\lt \\cdots \\lt X_M
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM S1S_1 S2S_2 ldots\\ldots SN1S_{N-1} X1X_1 X2X_2 ldots\\ldots XMX_M

Output

Print the maximum possible number of terms that are lucky numbers in a good sequence AA.


Sample Input 1

9 2
2 3 3 4 -4 -7 -4 -1
-1 5

Sample Output 1

4

A good sequence A=(3,1,4,1,5,9,2,6,5)A = (3, -1, 4, -1, 5, -9, 2, -6, 5) contains four terms that are lucky numbers: A2,A4,A5,A9A_2, A_4, A_5, A_9, which is the maximum possible count.


Sample Input 2

20 10
-183260318 206417795 409343217 238245886 138964265 -415224774 -499400499 -313180261 283784093 498751662 668946791 965735441 382033304 177367159 31017484 27914238 757966050 878978971 73210901
-470019195 -379631053 -287722161 -231146414 -84796739 328710269 355719851 416979387 431167199 498905398

Sample Output 2

8