#abc247e. [abc247_e]Max Min

[abc247_e]Max Min

Problem Statement

We have a number sequence A=(A1,A2,dots,AN)A = (A_1, A_2, \\dots, A_N) of length NN and integers XX and YY. Find the number of pairs of integers (L,R)(L, R) satisfying all the conditions below.

  • 1leqLleqRleqN1 \\leq L \\leq R \\leq N
  • The maximum value of AL,AL+1,dots,ARA_L, A_{L+1}, \\dots, A_R is XX, and the minimum is YY.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2 \\times 10^5
  • 1leqAileq2times1051 \\leq A_i \\leq 2 \\times 10^5
  • 1leqYleqXleq2times1051 \\leq Y \\leq X \\leq 2 \\times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN XX YY A1A_1 A2A_2 dots\\dots ANA_N

Output

Print the answer.


Sample Input 1

4 3 1
1 2 3 1

Sample Output 1

4

44 pairs satisfy the conditions: (L,R)=(1,3),(1,4),(2,4),(3,4)(L,R)=(1,3),(1,4),(2,4),(3,4).


Sample Input 2

5 2 1
1 3 2 4 1

Sample Output 2

0

No pair (L,R)(L,R) satisfies the condition.


Sample Input 3

5 1 1
1 1 1 1 1

Sample Output 3

15

It may hold that X=YX=Y.


Sample Input 4

10 8 1
2 7 1 8 2 8 1 8 2 8

Sample Output 4

36