#abc223h. [abc223_h]Xor Query

[abc223_h]Xor Query

Problem Statement

Given is a sequence of NN positive integers A=(A1,dots,AN)A = (A_1, \\dots, A_N).

Process QQ queries. In the ii-th query (1leqileqQ)(1 \\leq i \\leq Q), determine whether it is possible to choose one or more elements from ALi,ALi+1,dots,ARiA_{L_i}, A_{L_i + 1}, \\dots, A_{R_i} so that their mathrmXOR\\mathrm{XOR} is XiX_i.

What is mathrmXOR\\mathrm{XOR}?

The bitwise mathrmXOR\\mathrm{XOR} of integers AA and BB, AmathrmXORBA\\ \\mathrm{XOR}\\ B, is defined as follows:

  • When AmathrmXORBA\\ \\mathrm{XOR}\\ B is written in base two, the digit in the 2k2^k's place (kgeq0k \\geq 0) is 11 if exactly one of AA and BB is 11, and 00 otherwise.

For example, we have 3mathrmXOR5=63\\ \\mathrm{XOR}\\ 5 = 6 (in base two: 011mathrmXOR101=110011\\ \\mathrm{XOR}\\ 101 = 110).

Constraints

  • 1leqNleq4times1051 \\leq N \\leq 4 \\times 10^5
  • 1leqQleq2times1051 \\leq Q \\leq 2 \\times 10^5
  • 1leqAilt2601 \\leq A_i \\lt 2^{60}
  • 1leqLileqRileqN1 \\leq L_i \\leq R_i \\leq N
  • 1leqXilt2601 \\leq X_i \\lt 2^{60}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN QQ A1A_1 ldots\\ldots ANA_N L1L_1 R1R_1 X1X_1 vdots\\vdots LQL_Q RQR_Q XQX_Q

Output

Print QQ lines. The ii-th line (1leqileqQ)(1 \\leq i \\leq Q) should contain Yes if it is possible to choose one or more elements from ALi,ALi+1,dots,ARiA_{L_i}, A_{L_i + 1}, \\dots, A_{R_i} so that their mathrmXOR\\mathrm{XOR} is XiX_i, and No otherwise.


Sample Input 1

5 2
3 1 4 1 5
1 3 7
2 5 7

Sample Output 1

Yes
No

In the first query, you can choose A1A_1 and A3A_3, whose mathrmXOR\\mathrm{XOR} is 77.

In the second query, there is no way to choose elements so that their mathrmXOR\\mathrm{XOR} is 77.


Sample Input 2

10 10
8 45 56 9 38 28 33 5 15 19
10 10 53
3 8 60
1 10 29
5 7 62
3 7 51
8 8 52
1 4 60
6 8 32
4 8 58
5 9 2

Sample Output 2

No
No
Yes
No
Yes
No
No
No
Yes
Yes