#abc200d. [abc200_d]Happy Birthday! 2

[abc200_d]Happy Birthday! 2

Problem Statement

You are given a sequence of NN positive integers: A=(A1,A2,dots,AN)A = (A_1, A_2, \\dots, A_N). Determine whether there is a pair of sequences $B = (B_1, B_2, \\dots, B_x), C = (C_1, C_2, \\dots, C_y)$ satisfying all of the conditions, and print one such pair if it exists.

  • 1x,yN1 ≤ x, y ≤ N.
  • 1leB1<B2<dots<BxleN1 \\le B_1 < B_2 < \\dots < B_{x} \\le N.
  • 1leC1<C2<dots<CyleN1 \\le C_1 < C_2 < \\dots < C_{y} \\le N.
  • BB and CC are different sequences.
    • Here, we consider BB and CC different when xyx ≠ y or there is an integer i(1imin(x,y))i\\ (1 ≤ i ≤ \\min(x, y)) such that BiCiB_i ≠ C_i.
  • AB1+AB2+dots+ABxA_{B_1} + A_{B_2} + \\dots + A_{B_x} and AC1+AC2+dots+ACyA_{C_1} + A_{C_2} + \\dots + A_{C_y} are equal modulo 200200.

Constraints

  • All values in input are integers.
  • 2leNle2002 \\le N \\le 200
  • 1leAile1091 \\le A_i \\le 10^9

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 dots\\dots ANA_N

Output

If there is no pair of sequences B,CB, C satisfying the conditions, print a single line containing No.
Otherwise, print your choice of BB and CC in the following format:

Yes xx B1B_1 B2B_2 dots\\dots BxB_x yy C1C_1 C2C_2 dots\\dots CyC_y

The checker is case-insensitive: you can use either uppercase or lowercase letters.


Sample Input 1

5
180 186 189 191 218

Sample Output 1

Yes
1 1
2 3 4

For B=(1),C=(3,4)B=(1),C=(3,4), we have A1=180,A3+A4=380A_1 = 180,\\ A_3 + A_4 = 380, which are equal modulo 200200.
There are other solutions that will also be accepted, such as:

yEs
4 2 3 4 5
3 1 2 5

Sample Input 2

2
123 523

Sample Output 2

Yes
1 1
1 2

Sample Input 3

6
2013 1012 2765 2021 508 6971

Sample Output 3

No

If there is no pair of sequences satisfying the conditions, print a single line containing No.