#abc184c. [abc184_c]Super Ryuma

[abc184_c]Super Ryuma

Problem Statement

There is an infinite two-dimensional grid, and we have a piece called Super Ryuma at square (r1,c1)(r_1, c_1). (Ryu means dragon and Ma means horse.) In one move, the piece can go to one of the squares shown below:

More formally, when Super Ryuma is at square (a,b)(a, b), it can go to square (c,d)(c, d) such that at least one of the following holds:

  • a+b=c+da + b = c + d
  • ab=cda - b = c - d
  • ac+bdle3|a - c| + |b - d| \\le 3

Find the minimum number of moves needed for the piece to reach (r2,c2)(r_2, c_2) from (r1,c1)(r_1, c_1).

Constraints

  • All values in input are integers.
  • 1ler1,c1,r2,c2le1091 \\le r_1, c_1, r_2, c_2 \\le 10^9

Input

Input is given from Standard Input in the following format:

r1r_1 c1c_1 r2r_2 c2c_2

Output

Print the minimum number of moves needed for Super Ryuma to reach (r2,c2)(r_2, c_2) from (r1,c1)(r_1, c_1).


Sample Input 1

1 1
5 6

Sample Output 1

2

We need two moves - for example, (1,1)rightarrow(5,5)rightarrow(5,6)(1, 1) \\rightarrow (5, 5) \\rightarrow (5, 6).


Sample Input 2

1 1
1 200001

Sample Output 2

2

We need two moves - for example, $(1, 1) \\rightarrow (100001, 100001) \\rightarrow (1, 200001)$.


Sample Input 3

2 3
998244353 998244853

Sample Output 3

3

We need three moves - for example, $(2, 3) \\rightarrow (3, 3) \\rightarrow (-247, 253) \\rightarrow (998244353, 998244853)$.


Sample Input 4

1 1
1 1

Sample Output 4

0