#abc177e. [abc177_e]Coprime

[abc177_e]Coprime

Problem Statement

We have NN integers. The ii-th number is AiA_i.

Ai\\{A_i\\} is said to be pairwise coprime when GCD(Ai,Aj)=1GCD(A_i,A_j)=1 holds for every pair (i,j)(i, j) such that 1leqi<jleqN1\\leq i < j \\leq N.

Ai\\{A_i\\} is said to be setwise coprime when Ai\\{A_i\\} is not pairwise coprime but GCD(A1,ldots,AN)=1GCD(A_1,\\ldots,A_N)=1.

Determine if Ai\\{A_i\\} is pairwise coprime, setwise coprime, or neither.

Here, GCD(ldots)GCD(\\ldots) denotes greatest common divisor.

Constraints

  • 2leqNleq1062 \\leq N \\leq 10^6
  • 1leqAileq1061 \\leq A_i\\leq 10^6

Input

Input is given from Standard Input in the following format:

NN A1A_1 ldots\\ldots ANA_N

Output

If Ai\\{A_i\\} is pairwise coprime, print pairwise coprime; if Ai\\{A_i\\} is setwise coprime, print setwise coprime; if neither, print not coprime.


Sample Input 1

3
3 4 5

Sample Output 1

pairwise coprime

GCD(3,4)=GCD(3,5)=GCD(4,5)=1GCD(3,4)=GCD(3,5)=GCD(4,5)=1, so they are pairwise coprime.


Sample Input 2

3
6 10 15

Sample Output 2

setwise coprime

Since GCD(6,10)=2GCD(6,10)=2, they are not pairwise coprime. However, since GCD(6,10,15)=1GCD(6,10,15)=1, they are setwise coprime.


Sample Input 3

3
6 10 16

Sample Output 3

not coprime

GCD(6,10,16)=2GCD(6,10,16)=2, so they are neither pairwise coprime nor setwise coprime.