#abc163d. [abc163_d]Sum of Large Numbers

[abc163_d]Sum of Large Numbers

Problem Statement

We have N+1N+1 integers: 1010010^{100}, 10100+110^{100}+1, ..., 10100+N10^{100}+N.

We will choose KK or more of these integers. Find the number of possible values of the sum of the chosen numbers, modulo (109+7)(10^9+7).

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2\\times 10^5
  • 1leqKleqN+11 \\leq K \\leq N+1
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN KK

Output

Print the number of possible values of the sum, modulo (109+7)(10^9+7).


Sample Input 1

3 2

Sample Output 1

10

The sum can take 1010 values, as follows:

  • (10100)+(10100+1)=2times10100+1(10^{100})+(10^{100}+1)=2\\times 10^{100}+1
  • (10100)+(10100+2)=2times10100+2(10^{100})+(10^{100}+2)=2\\times 10^{100}+2
  • $(10^{100})+(10^{100}+3)=(10^{100}+1)+(10^{100}+2)=2\\times 10^{100}+3$
  • (10100+1)+(10100+3)=2times10100+4(10^{100}+1)+(10^{100}+3)=2\\times 10^{100}+4
  • (10100+2)+(10100+3)=2times10100+5(10^{100}+2)+(10^{100}+3)=2\\times 10^{100}+5
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)=3\\times 10^{100}+3$
  • $(10^{100})+(10^{100}+1)+(10^{100}+3)=3\\times 10^{100}+4$
  • $(10^{100})+(10^{100}+2)+(10^{100}+3)=3\\times 10^{100}+5$
  • $(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=3\\times 10^{100}+6$
  • $(10^{100})+(10^{100}+1)+(10^{100}+2)+(10^{100}+3)=4\\times 10^{100}+6$

Sample Input 2

200000 200001

Sample Output 2

1

We must choose all of the integers, so the sum can take just 11 value.


Sample Input 3

141421 35623

Sample Output 3

220280457