#abc156f. [abc156_f]Modularness

[abc156_f]Modularness

Problem Statement

We have a sequence of kk numbers: d0,d1,...,dk1d_0,d_1,...,d_{k - 1}.

Process the following qq queries in order:

  • The ii-th query contains three integers nin_i, xix_i, and mim_i. Let a0,a1,...,ani1a_0,a_1,...,a_{n_i - 1} be the following sequence of nin_i numbers: \[ \begin{aligned} a_j = \begin{cases} x_i & ( j = 0 ) \\ a_{j - 1} + d_{(j - 1)~\textrm{mod}~k} & ( 0 < j \leq n_i - 1 ) \end{cases}\end{aligned} \] Print the number of j (0leqj<ni1)j~(0 \\leq j < n_i - 1) such that $(a_j~\\textrm{mod}~m_i) < (a_{j + 1}~\\textrm{mod}~m_i)$.

Here (y textrmmod z)(y~\\textrm{mod}~z) denotes the remainder of yy divided by zz, for two integers yy and z (z>0)z~(z > 0).

Constraints

  • All values in input are integers.
  • 1leqk,qleq50001 \\leq k, q \\leq 5000
  • 0leqdileq1090 \\leq d_i \\leq 10^9
  • 2leqnileq1092 \\leq n_i \\leq 10^9
  • 0leqxileq1090 \\leq x_i \\leq 10^9
  • 2leqmileq1092 \\leq m_i \\leq 10^9

Input

Input is given from Standard Input in the following format:

kk qq d0d_0 d1d_1 ...... dk1d_{k - 1} n1n_1 x1x_1 m1m_1 n2n_2 x2x_2 m2m_2 :: nqn_q xqx_q mqm_q

Output

Print qq lines.

The ii-th line should contain the response to the ii-th query.


Sample Input 1

3 1
3 1 4
5 3 2

Sample Output 1

1

For the first query, the sequence {aja_j} will be 3,6,7,11,143,6,7,11,14.

  • (a0 textrmmod 2)>(a1 textrmmod 2)(a_0~\\textrm{mod}~2) > (a_1~\\textrm{mod}~2)
  • (a1 textrmmod 2)<(a2 textrmmod 2)(a_1~\\textrm{mod}~2) < (a_2~\\textrm{mod}~2)
  • (a2 textrmmod 2)=(a3 textrmmod 2)(a_2~\\textrm{mod}~2) = (a_3~\\textrm{mod}~2)
  • (a3 textrmmod 2)>(a4 textrmmod 2)(a_3~\\textrm{mod}~2) > (a_4~\\textrm{mod}~2)

Thus, the response to this query should be 11.


Sample Input 2

7 3
27 18 28 18 28 46 1000000000
1000000000 1 7
1000000000 2 10
1000000000 3 12

Sample Output 2

224489796
214285714
559523809