#arc158b. [arc158_b]Sum-Product Ratio

[arc158_b]Sum-Product Ratio

Problem Statement

You are given non-zero integers x1,ldots,xNx_1, \\ldots, x_N. Find the minimum and maximum values of dfracxi+xj+xkxixjxk\\dfrac{x_i+x_j+x_k}{x_ix_jx_k} for integers ii, jj, kk such that 1leqi<j<kleqN1\\leq i < j < k\\leq N.

Constraints

  • 3leqNleq2times1053\\leq N\\leq 2\\times 10^5
  • \-106leqxileq106\-10^6\\leq x_i \\leq 10^6
  • xineq0x_i\\neq 0

Input

The input is given from Standard Input in the following format:

NN x1x_1 ldots\\ldots xNx_N

Output

Print the minimum value of dfracxi+xj+xkxixjxk\\dfrac{x_i+x_j+x_k}{x_ix_jx_k} in the first line and the maximum value in the second line.

Your output will be considered correct when the absolute or relative error is at most 101210^{-12}.


Sample Input 1

4
-2 -4 4 5

Sample Output 1

-0.175000000000000
-0.025000000000000

dfracxi+xj+xkxixjxk\\dfrac{x_i+x_j+x_k}{x_ix_jx_k} can take the following four values.

  • (i,j,k)=(1,2,3)(i,j,k) = (1,2,3): $\\dfrac{(-2) + (-4) + 4}{(-2)\\cdot (-4)\\cdot 4} = -\\dfrac{1}{16}$.
  • (i,j,k)=(1,2,4)(i,j,k) = (1,2,4): $\\dfrac{(-2) + (-4) + 5}{(-2)\\cdot (-4)\\cdot 5} = -\\dfrac{1}{40}$.
  • (i,j,k)=(1,3,4)(i,j,k) = (1,3,4): $\\dfrac{(-2) + 4 + 5}{(-2)\\cdot 4\\cdot 5} = -\\dfrac{7}{40}$.
  • (i,j,k)=(2,3,4)(i,j,k) = (2,3,4): $\\dfrac{(-4) + 4 + 5}{(-4)\\cdot 4\\cdot 5} = -\\dfrac{1}{16}$.

Among them, the minimum is \-dfrac740\-\\dfrac{7}{40}, and the maximum is \-dfrac140\-\\dfrac{1}{40}.


Sample Input 2

4
1 1 1 1

Sample Output 2

3.000000000000000
3.000000000000000

Sample Input 3

5
1 2 3 4 5

Sample Output 3

0.200000000000000
1.000000000000000