#arc136d. [arc136_d]Without Carry

[arc136_d]Without Carry

Problem Statement

You are given an integer sequence of length NN: A=(A1,A2,cdots,AN)A=(A_1,A_2,\\cdots,A_N).

Find the number of pairs of integers (i,j)(i,j) (1leqi<jleqN1 \\leq i < j \\leq N) such that calculation of Ai+AjA_i+A_j by column addition does not involve carrying.

Constraints

  • 2leqNleq1062 \\leq N \\leq 10^6
  • 0leqAileq10610 \\leq A_i \\leq 10^6-1
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 cdots\\cdots ANA_N

Output

Print the answer.


Sample Input 1

4
4 8 12 90

Sample Output 1

3

The pairs (i,j)(i,j) that count are (1,3),(1,4),(2,4)(1,3),(1,4),(2,4).

For example, calculation of A1+A3=4+12A_1+A_3=4+12 does not involve carrying, so (i,j)=(1,3)(i,j)=(1,3) counts. On the other hand, calculation of A3+A4=12+90A_3+A_4=12+90 involves carrying, so (i,j)=(3,4)(i,j)=(3,4) does not count.


Sample Input 2

20
313923 246114 271842 371982 284858 10674 532090 593483 185123 364245 665161 241644 604914 645577 410849 387586 732231 952593 249651 36908

Sample Output 2

6

Sample Input 3

5
1 1 1 1 1

Sample Output 3

10