#arc122e. [arc122_e]Increasing LCMs

[arc122_e]Increasing LCMs

Problem Statement

We have a sequence of NN positive integers: A1,A2,cdots,ANA_1,A_2,\\cdots,A_N. You are to rearrange these integers into another sequence x1,x2,cdots,xNx_1,x_2,\\cdots,x_N, where xx must satisfy the following condition:

  • Let us define yi=operatornameLCM(x1,x2,cdots,xi)y_i=\\operatorname{LCM}(x_1,x_2,\\cdots,x_i), where the function operatornameLCM\\operatorname{LCM} returns the least common multiple of the given integers. Then, yy is strictly increasing. In other words, y1<y2<cdots<yNy_1<y_2<\\cdots<y_N holds.

Determine whether it is possible to form a sequence xx satisfying the condition, and show one such sequence if it is possible.

Constraints

  • 1leqNleq1001 \\leq N \\leq 100
  • 2leqA1<A2cdots<ANleq10182 \\leq A_1 < A_2 \\cdots < A_N \\leq 10^{18}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 cdots\\cdots ANA_N

Output

If it is possible to form a sequence xx satisfying the condition, print your answer in the following format:

Yes x1x_1 x2x_2 cdots\\cdots xNx_N

If it is impossible, print No.


Sample Input 1

3
3 4 6

Sample Output 1

Yes
3 6 4

For x=(3,6,4)x=(3,6,4), we have:

  • y1=operatornameLCM(3)=3y_1=\\operatorname{LCM}(3)=3
  • y2=operatornameLCM(3,6)=6y_2=\\operatorname{LCM}(3,6)=6
  • y3=operatornameLCM(3,6,4)=12y_3=\\operatorname{LCM}(3,6,4)=12

Here, y1<y2<y3y_1<y_2<y_3 holds.


Sample Input 2

3
2 3 6

Sample Output 2

No

No permutation of AA would satisfy the condition.


Sample Input 3

10
922513 346046618969 3247317977078471 4638516664311857 18332844097865861 81706734998806133 116282391418772039 134115264093375553 156087536381939527 255595307440611247

Sample Output 3

Yes
922513 346046618969 116282391418772039 81706734998806133 255595307440611247 156087536381939527 134115264093375553 18332844097865861 3247317977078471 4638516664311857