#arc118d. [arc118_d]Hamiltonian Cycle

[arc118_d]Hamiltonian Cycle

Problem Statement

Given are a prime number PP and positive integers aa and bb. Determine whether there is a sequence of PP integers, A=(A1,A2,ldots,AP)A = (A_1, A_2, \\ldots, A_P), satisfying all of the conditions below, and print one such sequence if it exists.

  • 1leqAileqP11\\leq A_i\\leq P - 1.
  • A1=AP=1A_1 = A_P = 1.
  • (A1,A2,ldots,AP1)(A_1, A_2, \\ldots, A_{P-1}) is a permutation of (1,2,ldots,P1)(1, 2, \\ldots, P-1).
  • For every 2leqileqP2\\leq i\\leq P, at least one of the following holds.
    • AiequivaAi1pmodPA_{i} \\equiv aA_{i-1}\\pmod{P}
    • Ai1equivaAipmodPA_{i-1} \\equiv aA_{i}\\pmod{P}
    • AiequivbAi1pmodPA_{i} \\equiv bA_{i-1}\\pmod{P}
    • Ai1equivbAipmodPA_{i-1} \\equiv bA_{i}\\pmod{P}

Constraints

  • 2leqPleq1052\\leq P\\leq 10^5
  • PP is a prime.
  • 1leqa,bleqP11\\leq a, b \\leq P - 1

Input

Input is given from Standard Input in the following format:

PP aa bb

Output

If there is an integer sequence AA satisfying the conditions, print Yes; otherwise, print No. In the case of Yes, print the elements in your sequence AA satisfying the requirement in the next line, with spaces in between.

A1A_1 A2A_2 ldots\\ldots APA_P

If multiple sequences satisfy the requirement, any of them will be accepted.


Sample Input 1

13 4 5

Sample Output 1

Yes
1 5 11 3 12 9 7 4 6 8 2 10 1

This sequence satisfies the conditions, since we have the following modulo P=13P = 13:

  • A2equiv5A1A_2\\equiv 5A_1
  • A2equiv4A3A_2\\equiv 4A_3
  • vdots\\vdots
  • A13equiv4A12A_{13}\\equiv 4A_{12}

Sample Input 2

13 1 2

Sample Output 2

Yes
1 2 4 8 3 6 12 11 9 5 10 7 1

Sample Input 3

13 9 3

Sample Output 3

No

Sample Input 4

13 1 1

Sample Output 4

No