#arc117a. [arc117_a]God Sequence

[arc117_a]God Sequence

Problem Statement

A sequence of length A+BA + B, E=(E1,E2,dots,EA+B)E = (E_1, E_2, \\dots, E_{A+B}), that satisfies all of the conditions below is said to be a god sequence.

  • E1+E2+cdots+EA+B=0E_1 + E_2 + \\cdots + E_{A+B} = 0 holds.
  • There are exactly AA positive integers among E1,E2,dots,EA+BE_1, E_2, \\dots, E_{A+B}.
  • There are exactly BB negative integers among E1,E2,dots,EA+BE_1, E_2, \\dots, E_{A+B}.
  • E1,E2,dots,EA+BE_1, E_2, \\dots, E_{A+B} are all distinct.
  • \-109leqEileq109,Eineq0\-10^{9} \\leq E_i \\leq 10^9, E_i \\neq 0 holds for every ii (1leqileqA+B)(1 \\leq i \\leq A+B).

Construct one god sequence.

We can prove that at least one god sequence exists under Constraints of this problem.

Constraints

  • 1leqAleq10001 \\leq A \\leq 1000
  • 1leqBleq10001 \\leq B \\leq 1000
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

AA BB

Output

Print the elements of your sequence in one line, with space as separator.

If there are multiple god sequences, any of them will be accepted.

E1E_1 E2E_2 cdots\\cdots EA+BE_{A+B}


Sample Input 1

1 1

Sample Output 1

1001 -1001

A sequence (1001,1001)(1001, -1001) contains A=1A=1 positive integer and B=1B=1 negative integer totaling 1001+(1001)=01001+(-1001)=0.

It also satisfies the other conditions and thus is a god sequence.


Sample Input 2

1 4

Sample Output 2

-8 -6 -9 120 -97

A sequence (8,6,9,120,97)(-8, -6, -9, 120, -97) contains A=1A=1 positive integer and B=4B=4 negative integers totaling (8)+(6)+(9)+120+(97)=0(-8)+(-6)+(-9)+120+(-97)=0.

It also satisfies the other conditions and thus is a god sequence.


Sample Input 3

7 5

Sample Output 3

323 -320 411 206 -259 298 -177 -564 167 392 -628 151