#arc113d. [arc113_d]Sky Reflector

[arc113_d]Sky Reflector

Problem Statement

In a grid with NN horizontal rows and MM vertical columns of squares, we will write an integer between 11 and KK (inclusive) on each square and define sequences A,BA, B as follows:

  • for each i=1,dots,Ni=1,\\dots, N, AiA_i is the minimum value written on a square in the ii-th row;
  • for each j=1,dots,Mj=1,\\dots, M, BjB_j is the maximum value written on a square in the jj-th column.

Given N,M,KN, M, K, find the number of different pairs of sequences that can be (A,B)(A, B), modulo 998244353998244353.

Constraints

  • 1leqN,M,Kleq2times1051 \\leq N,M,K \\leq 2\\times 10^5
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM KK

Output

Print the number of different pairs of sequences that can be (A,B)(A, B), modulo 998244353998244353.


Sample Input 1

2 2 2

Sample Output 1

7

(A1,A2,B1,B2)(A_1,A_2,B_1,B_2) can be (1,1,1,1)(1,1,1,1), (1,1,1,2)(1,1,1,2), (1,1,2,1)(1,1,2,1), (1,1,2,2)(1,1,2,2), (1,2,2,2)(1,2,2,2), (2,1,2,2)(2,1,2,2), or (2,2,2,2)(2,2,2,2) - there are seven candidates.


Sample Input 2

1 1 100

Sample Output 2

100

Sample Input 3

31415 92653 58979

Sample Output 3

469486242