#arc095b. [arc095_b]Binomial Coefficients

[arc095_b]Binomial Coefficients

Problem Statement

Let rmcomb(n,r){\\rm comb}(n,r) be the number of ways to choose rr objects from among nn objects, disregarding order. From nn non-negative integers a1,a2,...,ana_1, a_2, ..., a_n, select two numbers ai>aja_i > a_j so that rmcomb(ai,aj){\\rm comb}(a_i,a_j) is maximized. If there are multiple pairs that maximize the value, any of them is accepted.

Constraints

  • 2leqnleq1052 \\leq n \\leq 10^5
  • 0leqaileq1090 \\leq a_i \\leq 10^9
  • a1,a2,...,ana_1,a_2,...,a_n are pairwise distinct.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

nn a1a_1 a2a_2 ...... ana_n

Output

Print aia_i and aja_j that you selected, with a space in between.


Sample Input 1

5
6 9 4 2 11

Sample Output 1

11 6

rmcomb(ai,aj)\\rm{comb}(a_i,a_j) for each possible selection is as follows:

  • rmcomb(4,2)=6\\rm{comb}(4,2)=6
  • rmcomb(6,2)=15\\rm{comb}(6,2)=15
  • rmcomb(6,4)=15\\rm{comb}(6,4)=15
  • rmcomb(9,2)=36\\rm{comb}(9,2)=36
  • rmcomb(9,4)=126\\rm{comb}(9,4)=126
  • rmcomb(9,6)=84\\rm{comb}(9,6)=84
  • rmcomb(11,2)=55\\rm{comb}(11,2)=55
  • rmcomb(11,4)=330\\rm{comb}(11,4)=330
  • rmcomb(11,6)=462\\rm{comb}(11,6)=462
  • rmcomb(11,9)=55\\rm{comb}(11,9)=55

Thus, we should print 1111 and 66.


Sample Input 2

2
100 0

Sample Output 2

100 0