#agc060d. [agc060_d]Same Descent Set

[agc060_d]Same Descent Set

Problem Statement

Find the number of pairs $(P,Q)=((P_1,P_2,\\cdots,P_N),(Q_1,Q_2,\\cdots,Q_N))$ of permutations of (1,2,cdots,N)(1,2,\\cdots,N) that satisfy the following condition, modulo 998244353998244353.

  • For every ii (1leqileqN11 \\leq i \\leq N-1), one of the two conditions below holds.
    • Pi<Pi+1P_i < P_{i+1} and Qi<Qi+1Q_i < Q_{i+1}.
    • Pi>Pi+1P_i > P_{i+1} and Qi>Qi+1Q_i > Q_{i+1}.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2 \\times 10^5
  • All numbers in the input are integers.

Input

The input is given from Standard Input in the following format:

NN

Output

Print the answer.


Sample Input 1

2

Sample Output 1

2

Two pairs, (P,Q)=((1,2),(1,2))(P,Q)=((1,2),(1,2)) and (P,Q)=((2,1),(2,1))(P,Q)=((2,1),(2,1)), satisfy the condition.


Sample Input 2

3

Sample Output 2

10

Sample Input 3

4

Sample Output 3

88

Sample Input 4

10

Sample Output 4

286574791