#agc056b. [agc056_b]Range Argmax

[agc056_b]Range Argmax

Problem Statement

Given are an integer NN and MM pairs of integers. The ii-th pair is (Li,Ri)(L_i,R_i).

Find the number of integer sequences x=(x1,x2,cdots,xM)x=(x_1,x_2,\\cdots,x_M) that can be generated as follows, modulo 998244353998244353.

  • Provide a permutation p=(p1,p2,cdots,pN)p=(p_1,p_2,\\cdots,p_N) of (1,2,cdots,N)(1,2,\\cdots,N).
  • For each ii (1leqileqM1 \\leq i \\leq M), let xix_i be the index of the largest element among pLi,pLi+1,cdots,pRip_{L_i},p_{L_i+1},\\cdots,p_{R_i}. That is, max(pLi,pLi+1,cdots,pRi)=pxi\\max(p_{L_i},p_{L_i+1},\\cdots,p_{R_i})=p_{x_i}.

Constraints

  • 2leqNleq3002 \\leq N \\leq 300
  • 1leqMleqN(N1)/21 \\leq M \\leq N(N-1)/2
  • 1leqLi<RileqN1 \\leq L_i < R_i \\leq N
  • (Li,Ri)neq(Lj,Rj)(L_i,R_i) \\neq (L_j,R_j) (ineqji \\neq j)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM L1L_1 R1R_1 L2L_2 R2R_2 vdots\\vdots LML_M RMR_M

Output

Print the answer.


Sample Input 1

3 2
1 2
1 3

Sample Output 1

4

For example, for p=(2,1,3)p=(2,1,3), we will have x=(1,3)x=(1,3).

The four sequences that meet the requirement are x=(1,1),(1,3),(2,2),(2,3)x=(1,1),(1,3),(2,2),(2,3).


Sample Input 2

6 3
1 2
3 4
5 6

Sample Output 2

8

Sample Input 3

10 10
8 10
5 8
5 7
2 5
1 7
4 5
5 9
2 8
7 8
3 9

Sample Output 3

1060