#abc303h. [abc303_h]Constrained Tree Degree

[abc303_h]Constrained Tree Degree

Problem Statement

You are given an integer NN and a set S=lbraceS1,S2,ldots,SKrbraceS=\\lbrace S_1,S_2,\\ldots,S_K\\rbrace consisting of integers between 11 and N1N-1.

Find the number, modulo 998244353998244353, of trees TT with NN vertices numbered 11 through NN such that:

  • diinSd_i\\in S for all i(1leqileqN)i\\ (1\\leq i \\leq N), where did_i is the degree of vertex ii in TT.

Constraints

  • 2leqNleq2times1052\\leq N \\leq 2\\times 10^5
  • 1leqKleqN11\\leq K \\leq N-1
  • 1leqS1<S2<ldots<SKleqN11\\leq S_1 < S_2 < \\ldots < S_K \\leq N-1
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN KK S1S_1 ldots\\ldots SKS_K

Output

Print the number, modulo 998244353998244353, of the conforming trees TT.


Sample Input 1

4 2
1 3

Sample Output 1

4

A tree satisfies the condition if the degree of one vertex is 33 and the others' are 11. Thus, the answer is 44.


Sample Input 2

10 5
1 2 3 5 6

Sample Output 2

68521950

Sample Input 3

100 5
1 2 3 14 15

Sample Output 3

888770956

Print the count modulo 998244353998244353.