#abc294c. [abc294_c]Merge Sequences

[abc294_c]Merge Sequences

Problem Statement

You are given strictly increasing sequences of length NN and MM: A=(A1,A2,ldots,AN)A=(A _ 1,A _ 2,\\ldots,A _ N) and B=(B1,B2,ldots,BM)B=(B _ 1,B _ 2,\\ldots,B _ M). Here, AineqBjA _ i\\neq B _ j for every ii and jj (1leqileqN,1leqjleqM)(1\\leq i\\leq N,1\\leq j\\leq M).

Let C=(C1,C2,ldots,CN+M)C=(C _ 1,C _ 2,\\ldots,C _ {N+M}) be a strictly increasing sequence of length N+MN+M that results from the following procedure.

  • Let CC be the concatenation of AA and BB. Formally, let Ci=AiC _ i=A _ i for i=1,2,ldots,Ni=1,2,\\ldots,N, and Ci=BiNC _ i=B _ {i-N} for i=N+1,N+2,ldots,N+Mi=N+1,N+2,\\ldots,N+M.
  • Sort CC in ascending order.

For each of $A _ 1,A _ 2,\\ldots,A _ N, B _ 1,B _ 2,\\ldots,B _ M$, find its position in CC. More formally, for each i=1,2,ldots,Ni=1,2,\\ldots,N, find kk such that Ck=AiC _ k=A _ i, and for each j=1,2,ldots,Mj=1,2,\\ldots,M, find kk such that Ck=BjC _ k=B _ j.

Constraints

  • 1leqN,Mleq1051\\leq N,M\\leq 10^5
  • $1\\leq A _ 1\\lt A _ 2\\lt\\cdots\\lt A _ N\\leq 10^9$
  • $1\\leq B _ 1\\lt B _ 2\\lt\\cdots\\lt B _ M\\leq 10^9$
  • AineqBjA _ i\\neq B _ j for every ii and jj (1leqileqN,1leqjleqM)(1\\leq i\\leq N,1\\leq j\\leq M).
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN MM A1A _ 1 A2A _ 2 ldots\\ldots ANA _ N B1B _ 1 B2B _ 2 ldots\\ldots BMB _ M

Output

Print the answer in two lines.
The first line should contain the positions of A1,A2,ldots,ANA _ 1,A _ 2,\\ldots,A _ N in CC, with spaces in between.
The second line should contain the positions of B1,B2,ldots,BMB _ 1,B _ 2,\\ldots,B _ M in CC, with spaces in between.


Sample Input 1

4 3
3 14 15 92
6 53 58

Sample Output 1

1 3 4 7
2 5 6

CC will be (3,6,14,15,53,58,92)(3,6,14,15,53,58,92). Here, the 11-st, 33-rd, 44-th, 77-th elements are from A=(3,14,15,92)A=(3,14,15,92), and the 22-nd, 55-th, 66-th elements are from B=(6,53,58)B=(6,53,58).


Sample Input 2

4 4
1 2 3 4
100 200 300 400

Sample Output 2

1 2 3 4
5 6 7 8

Sample Input 3

8 12
3 4 10 15 17 18 22 30
5 7 11 13 14 16 19 21 23 24 27 28

Sample Output 3

1 2 5 9 11 12 15 20
3 4 6 7 8 10 13 14 16 17 18 19