#abc292c. [abc292_c]Four Variables

[abc292_c]Four Variables

Problem Statement

You are given a positive integer NN.
Find the number of quadruples of positive integers (A,B,C,D)(A,B,C,D) such that AB+CD=NAB + CD = N.

Under the constraints of this problem, it can be proved that the answer is at most 9times10189 \\times 10^{18}.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2 \\times 10^5
  • NN is an integer.

Input

The input is given from Standard Input in the following format:

NN

Output

Print the answer.


Sample Input 1

4

Sample Output 1

8

Here are the eight desired quadruples.

  • (A,B,C,D)=(1,1,1,3)(A,B,C,D)=(1,1,1,3)
  • (A,B,C,D)=(1,1,3,1)(A,B,C,D)=(1,1,3,1)
  • (A,B,C,D)=(1,2,1,2)(A,B,C,D)=(1,2,1,2)
  • (A,B,C,D)=(1,2,2,1)(A,B,C,D)=(1,2,2,1)
  • (A,B,C,D)=(1,3,1,1)(A,B,C,D)=(1,3,1,1)
  • (A,B,C,D)=(2,1,1,2)(A,B,C,D)=(2,1,1,2)
  • (A,B,C,D)=(2,1,2,1)(A,B,C,D)=(2,1,2,1)
  • (A,B,C,D)=(3,1,1,1)(A,B,C,D)=(3,1,1,1)

Sample Input 2

292

Sample Output 2

10886

Sample Input 3

19876

Sample Output 3

2219958