#abc282g. [abc282_g]Similar Permutation

[abc282_g]Similar Permutation

Problem Statement

Below, a permutation of (1,2,ldots,N)(1,2,\\ldots,N) is simply called a permutation.

For two permutations A=(A1,A2,ldots,AN),B=(B1,B2,ldots,BN)A=(A_1,A_2,\\ldots,A_N),B=(B_1,B_2,\\ldots,B_N), let us define their similarity as the number of integers ii between 11 and N1N-1 such that:

  • (Ai+1Ai)(Bi+1Bi)>0(A_{i+1}-A_i)(B_{i+1}-B_i)>0.

Find the number, modulo a prime number PP, of pairs of permutations (A,B)(A,B) whose similarity is KK.

Constraints

  • 2leqNleq1002\\leq N \\leq 100
  • 0leqKleqN10\\leq K \\leq N-1
  • 108leqPleq10910^8 \\leq P \\leq 10^9
  • PP is a prime number.
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN KK PP

Output

Print the answer.


Sample Input 1

3 1 282282277

Sample Output 1

16

For instance, below is a pair of permutations that satisfies the condition.

  • A=(1,2,3)A=(1,2,3)
  • B=(1,3,2)B=(1,3,2)

Here, we have (A2A1)(B2B1)>0(A_2 - A_1)(B_2 -B_1) > 0 and (A3A2)(B3B2)<0(A_3 - A_2)(B_3 -B_2) < 0, so the similarity of AA and BB is 11.


Sample Input 2

50 25 998244353

Sample Output 2

131276976

Print the number modulo PP.