#abc279h. [abc279_h]Sum of Prod of Min

[abc279_h]Sum of Prod of Min

Problem Statement

You are given positive integers NN and MM. Here, it is guaranteed that NleqMleq2NN\\leq M \\leq 2N.

Print the sum, modulo 200003200\\ 003 (a prime), of the following value over all sequences of positive integers S=(S1,S2,dots,SN)S=(S_1,S_2,\\dots,S_N) such that displaystylesumi=1NSi=M\\displaystyle \\sum_{i=1}^{N} S_i = M (notice the unusual modulo):

  • displaystyleprodk=1Nmin(k,Sk)\\displaystyle \\prod_{k=1}^{N} \\min(k,S_k).

Constraints

  • 1leqNleq10121 \\leq N \\leq 10^{12}
  • NleqMleq2NN \\leq M \\leq 2N
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN MM

Output

Print the answer as an integer.


Sample Input 1

3 5

Sample Output 1

14

There are six sequences SS that satisfy the condition: $S=(1,1,3), S=(1,2,2), S=(1,3,1), S=(2,1,2), S=(2,2,1), S=(3,1,1)$.

The value displaystyleprodk=1Nmin(k,Sk)\\displaystyle \\prod_{k=1}^{N} \\min(k,S_k) for each of those SS is as follows.

  • S=(1,1,3)S=(1,1,3) : 1times1times3=31\\times 1 \\times 3 = 3
  • S=(1,2,2)S=(1,2,2) : 1times2times2=41\\times 2 \\times 2 = 4
  • S=(1,3,1)S=(1,3,1) : 1times2times1=21\\times 2 \\times 1 = 2
  • S=(2,1,2)S=(2,1,2) : 1times1times2=21\\times 1 \\times 2 = 2
  • S=(2,2,1)S=(2,2,1) : 1times2times1=21\\times 2 \\times 1 = 2
  • S=(3,1,1)S=(3,1,1) : 1times1times1=11\\times 1 \\times 1 = 1

Thus, you should print their sum: 1414.


Sample Input 2

1126 2022

Sample Output 2

40166

Print the sum modulo 200003200\\ 003.


Sample Input 3

1000000000000 1500000000000

Sample Output 3

180030