#abc262b. [abc262_b]Triangle (Easier)

[abc262_b]Triangle (Easier)

Problem Statement

You are given a simple undirected graph with NN vertices and MM edges. The vertices are numbered 1,dots,N1, \\dots, N, and the ii-th (1leqileqM)(1 \\leq i \\leq M) edge connects Vertex UiU_i and Vertex ViV_i.

Find the number of tuples of integers a,b,ca, b, c that satisfy all of the following conditions:

  • 1leqaltbltcleqN1 \\leq a \\lt b \\lt c \\leq N
  • There is an edge connecting Vertex aa and Vertex bb.
  • There is an edge connecting Vertex bb and Vertex cc.
  • There is an edge connecting Vertex cc and Vertex aa.

Constraints

  • 3leqNleq1003 \\leq N \\leq 100
  • 1leqMleqfracN(N1)21 \\leq M \\leq \\frac{N(N - 1)}{2}
  • $1 \\leq U_i \\lt V_i \\leq N \\, (1 \\leq i \\leq M)$
  • (Ui,Vi)neq(Uj,Vj),(ineqj)(U_i, V_i) \\neq (U_j, V_j) \\, (i \\neq j)
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM U1U_1 V1V_1 vdots\\vdots UMU_M VMV_M

Output

Print the answer.


Sample Input 1

5 6
1 5
4 5
2 3
1 4
3 5
2 5

Sample Output 1

2

(a,b,c)=(1,4,5),(2,3,5)(a, b, c) = (1, 4, 5), (2, 3, 5) satisfy the conditions.


Sample Input 2

3 1
1 2

Sample Output 2

0

Sample Input 3

7 10
1 7
5 7
2 5
3 6
4 7
1 5
2 4
1 3
1 6
2 7

Sample Output 3

4