#abc235f. [abc235_f]Variety of Digits

[abc235_f]Variety of Digits

Problem Statement

Given are MM digits CiC_i.

Find the sum, modulo 998244353998244353, of all integers between 11 and NN (inclusive) that contain all of C1,ldots,CMC_1, \\ldots, C_M when written in base 1010 without unnecessary leading zeros.

Constraints

  • 1leqN<101041 \\leq N < 10^{10^4}
  • 1leqMleq101 \\leq M \\leq 10
  • 0leqC1<ldots<CMleq90 \\leq C_1 < \\ldots < C_M \\leq 9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM C1C_1 ldots\\ldots CMC_M

Output

Print the answer.


Sample Input 1

104
2
0 1

Sample Output 1

520

Between 11 and 104104, there are six integers that contain both 0 and 1 when written in base 1010: 10,100,101,102,103,10410,100,101,102,103,104.
The sum of them is 520520.


Sample Input 2

999
4
1 2 3 4

Sample Output 2

0

Between 11 and 999999, no integer contains all of 1, 2, 3, 4.


Sample Input 3

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
5
0 2 4 6 8

Sample Output 3

397365274

Be sure to find the sum modulo 998244353998244353.