#abc212c. [abc212_c]Min Difference

[abc212_c]Min Difference

Problem Statement

You are given two sequences: A=(A1,A2,ldots,AN)A=(A_1,A_2, \\ldots ,A_N) consisting of NN positive integers, and B=(B1,ldots,BM)B=(B_1, \\ldots ,B_M) consisting of MM positive integers.

Find the minimum difference of an element of AA and an element of BB, that is, $\\displaystyle \\min_{ 1\\leq i\\leq N}\\displaystyle\\min_{1\\leq j\\leq M} \\lvert A_i-B_j\\rvert$.

Constraints

  • 1leqN,Mleq2times1051 \\leq N,M \\leq 2\\times 10^5
  • 1leqAileq1091 \\leq A_i \\leq 10^9
  • 1leqBileq1091 \\leq B_i \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM A1A_1 A2A_2 ldots\\ldots ANA_N B1B_1 B2B_2 ldots\\ldots BMB_M

Output

Print the answer.


Sample Input 1

2 2
1 6
4 9

Sample Output 1

2

Here is the difference for each of the four pair of an element of AA and an element of BB: lvert14rvert=3\\lvert 1-4\\rvert=3, lvert19rvert=8\\lvert 1-9\\rvert=8, lvert64rvert=2\\lvert 6-4\\rvert=2, and lvert69rvert=3\\lvert 6-9\\rvert=3. We should print the minimum of these values, or 22.


Sample Input 2

1 1
10
10

Sample Output 2

0

Sample Input 3

6 8
82 76 82 82 71 70
17 39 67 2 45 35 22 24

Sample Output 3

3