#abc207e. [abc207_e]Mod i

[abc207_e]Mod i

Problem Statement

Given is a sequence AA of NN numbers. Find the number of ways to separate AA into some number of non-empty contiguous subsequence B1,B2,ldots,BkB_1, B_2, \\ldots, B_k so that the following condition is satisfied:

  • For every i(1leqileqk)i\\ (1 \\leq i \\leq k), the sum of elements in BiB_i is divisible by ii.

Since the count can be enormous, print it modulo (109+7)(10^9+7).

Constraints

  • 1leqNleq30001 \\leq N \\leq 3000
  • 1leqAileq10151 \\leq A_i \\leq 10^{15}
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 A2A_2 ldots\\ldots ANA_N

Output

Print the number of ways to separate the sequence so that the condition in the Problem Statement is satisfied, modulo (109+7)(10^9+7).


Sample Input 1

4
1 2 3 4

Sample Output 1

3

We have three ways to separate the sequence, as follows:

  • (1),(2),(3),(4)(1),(2),(3),(4)
  • (1,2,3),(4)(1,2,3),(4)
  • (1,2,3,4)(1,2,3,4)

Sample Input 2

5
8 6 3 3 3

Sample Output 2

5

Sample Input 3

10
791754273866483 706434917156797 714489398264550 918142301070506 559125109706263 694445720452148 648739025948445 869006293795825 718343486637033 934236559762733

Sample Output 3

15

The values in input may not fit into a 3232-bit integer type.