#abc207c. [abc207_c]Many Segments

[abc207_c]Many Segments

Problem Statement

You are given NN intervals numbered 11 through NN, that are as follows:

  • if ti=1t_i=1, Interval ii is \[l_i,r_i\];
  • if ti=2t_i=2, Interval ii is \[li,ri)\[l_i,r_i);
  • if ti=3t_i=3, Interval ii is (l_i,r_i\];
  • if ti=4t_i=4, Interval ii is (li,ri)(l_i,r_i).

How many pairs of integers (i,j)(i,j) satisfying 1leqiltjleqN1 \\leq i \\lt j \\leq N are there such that Interval ii and Interval jj intersect?

What are \[X,Y\],\[X,Y),(X,Y\],(X,Y)?

  • A closed interval \[X,Y\] is an interval consisting of all real numbers xx such that XleqxleqYX \\leq x \\leq Y.
  • A half-open interval \[X,Y)\[X,Y) is an interval consisting of all real numbers xx such that Xleqx<YX \\leq x < Y.
  • A half-open interval (X,Y\] is an interval consisting of all real numbers xx such that X<xleqYX < x \\leq Y.
  • A open interval (X,Y)(X,Y) is an interval consisting of all real numbers xx such that X<x<YX < x < Y.

Roughly speaking, square brackets \[\] mean the endpoint is included, and curly brackets ()() mean the endpoint is excluded.

Constraints

  • 2leqNleq20002 \\leq N \\leq 2000
  • 1leqtileq41 \\leq t_i \\leq 4
  • 1leqliltrileq1091 \\leq l_i \\lt r_i \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN t1t_1 l1l_1 r1r_1 t2t_2 l2l_2 r2r_2 hspace1cmvdots\\hspace{1cm}\\vdots tNt_N lNl_N rNr_N

Output

Print the number of pairs of integers (i,j)(i,j) such that Interval ii and Interval jj intersect.


Sample Input 1

3
1 1 2
2 2 3
3 2 4

Sample Output 1

2

As defined in the Problem Statement, Interval 11 is \[1,2\], Interval 22 is \[2,3)\[2,3), and Interval 33 is (2,4\].

There are two pairs of integers (i,j)(i,j) such that Interval ii and Interval jj intersect: (1,2)(1,2) and (2,3)(2,3). For the first pair, the intersection is \[2,2\], and for the second pair, the intersection is (2,3)(2,3).


Sample Input 2

19
4 210068409 221208102
4 16698200 910945203
4 76268400 259148323
4 370943597 566244098
1 428897569 509621647
4 250946752 823720939
1 642505376 868415584
2 619091266 868230936
2 306543999 654038915
4 486033777 715789416
1 527225177 583184546
2 885292456 900938599
3 264004185 486613484
2 345310564 818091848
1 152544274 521564293
4 13819154 555218434
3 507364086 545932412
4 797872271 935850549
2 415488246 685203817

Sample Output 2

102