#abc206e. [abc206_e]Divide Both

[abc206_e]Divide Both

Problem Statement

Given integers LL and L,R(LleR)L,R\\ (L \\le R), find the number of pairs (x,y)(x,y) of integers satisfying all of the conditions below:

  • Llex,yleRL \\le x,y \\le R
  • Let gg be the greatest common divisor of xx and yy. Then, the following holds.
    • gneq1g \\neq 1, fracxgneq1\\frac{x}{g} \\neq 1, and fracygneq1\\frac{y}{g} \\neq 1.

Constraints

  • All values in input are integers.
  • 1leLleRle1061 \\le L \\le R \\le 10^6

Input

Input is given from Standard Input in the following format:

LL RR

Output

Print the answer as an integer.


Sample Input 1

3 7

Sample Output 1

2

Let us take some number of pairs of integers, for example.

  • (x,y)=(4,6)(x,y)=(4,6) satisfies the conditions.
  • (x,y)=(7,5)(x,y)=(7,5) has g=1g=1 and thus violates the condition.
  • (x,y)=(6,3)(x,y)=(6,3) has fracyg=1\\frac{y}{g}=1 and thus violates the condition.

There are two pairs satisfying the conditions: (x,y)=(4,6),(6,4)(x,y)=(4,6),(6,4).


Sample Input 2

4 10

Sample Output 2

12

Sample Input 3

1 1000000

Sample Output 3

392047955148