#abc162f. [abc162_f]Select Half

[abc162_f]Select Half

Problem Statement

Given is an integer sequence A1,...,ANA_1, ..., A_N of length NN.

We will choose exactly leftlfloorfracN2rightrfloor\\left\\lfloor \\frac{N}{2} \\right\\rfloor elements from this sequence so that no two adjacent elements are chosen.

Find the maximum possible sum of the chosen elements.

Here lfloorxrfloor\\lfloor x \\rfloor denotes the greatest integer not greater than xx.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2\\times 10^5
  • Aileq109|A_i|\\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN A1A_1 ...... ANA_N

Output

Print the maximum possible sum of the chosen elements.


Sample Input 1

6
1 2 3 4 5 6

Sample Output 1

12

Choosing 22, 44, and 66 makes the sum 1212, which is the maximum possible value.


Sample Input 2

5
-1000 -100 -10 0 10

Sample Output 2

0

Choosing \-10\-10 and 1010 makes the sum 00, which is the maximum possible value.


Sample Input 3

10
1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000 1000000000

Sample Output 3

5000000000

Watch out for overflow.


Sample Input 4

27
18 -28 18 28 -45 90 -45 23 -53 60 28 -74 -71 35 -26 -62 49 -77 57 24 -70 -93 69 -99 59 57 -49

Sample Output 4

295