#abc133c. [abc133_c]Remainder Minimization 2019

[abc133_c]Remainder Minimization 2019

Problem Statement

You are given two non-negative integers LL and RR. We will choose two integers ii and jj such that Lleqi<jleqRL \\leq i < j \\leq R. Find the minimum possible value of (itimesj)textmod2019(i \\times j) \\text{ mod } 2019.

Constraints

  • All values in input are integers.
  • 0leqL<Rleq2times1090 \\leq L < R \\leq 2 \\times 10^9

Input

Input is given from Standard Input in the following format:

LL RR

Output

Print the minimum possible value of (itimesj)textmod2019(i \\times j) \\text{ mod } 2019 when ii and jj are chosen under the given condition.


Sample Input 1

2020 2040

Sample Output 1

2

When (i,j)=(2020,2021)(i, j) = (2020, 2021), (itimesj)textmod2019=2(i \\times j) \\text{ mod } 2019 = 2.


Sample Input 2

4 5

Sample Output 2

20

We have only one choice: (i,j)=(4,5)(i, j) = (4, 5).