#dpw. [dp_w]Intervals

[dp_w]Intervals

Problem Statement

Consider a string of length NN consisting of 0 and 1. The score for the string is calculated as follows:

  • For each ii (1leqileqM1 \\leq i \\leq M), aia_i is added to the score if the string contains 1 at least once between the lil_i-th and rir_i-th characters (inclusive).

Find the maximum possible score of a string.

Constraints

  • All values in input are integers.
  • 1leqNleq2×1051 \\leq N \\leq 2 × 10^5
  • 1leqMleq2×1051 \\leq M \\leq 2 × 10^5
  • 1leqlileqrileqN1 \\leq l_i \\leq r_i \\leq N
  • aileq109|a_i| \\leq 10^9

Input

Input is given from Standard Input in the following format:

NN MM l1l_1 r1r_1 a1a_1 l2l_2 r2r_2 a2a_2 :: lMl_M rMr_M aMa_M

Output

Print the maximum possible score of a string.


Sample Input 1

5 3
1 3 10
2 4 -10
3 5 10

Sample Output 1

20

The score for 10001 is a1+a3=10+10=20a_1 + a_3 = 10 + 10 = 20.


Sample Input 2

3 4
1 3 100
1 1 -10
2 2 -20
3 3 -30

Sample Output 2

90

The score for 100 is a1+a2=100+(10)=90a_1 + a_2 = 100 + (-10) = 90.


Sample Input 3

1 1
1 1 -10

Sample Output 3

0

The score for 0 is 00.


Sample Input 4

1 5
1 1 1000000000
1 1 1000000000
1 1 1000000000
1 1 1000000000
1 1 1000000000

Sample Output 4

5000000000

The answer may not fit into a 32-bit integer type.


Sample Input 5

6 8
5 5 3
1 1 10
1 6 -8
3 6 5
3 4 9
5 5 -2
1 3 -6
4 6 -7

Sample Output 5

10

For example, the score for 101000 is $a_2 + a_3 + a_4 + a_5 + a_7 = 10 + (-8) + 5 + 9 + (-6) = 10$.