#arc158a. [arc158_a]+3 +5 +7

[arc158_a]+3 +5 +7

問題文

整数 x1,x2,x3x_1, x_2, x_3 が与えられます.あなたはこれらの整数に対して,次の操作を何度でも行うことができます(00 回でもよい):

  • (1,2,3)(1,2,3) の順列 (i,j,k)(i,j,k) をひとつ選ぶ.つまり 1leqi,j,kleq31\\leq i,j,k\\leq 3 であるような整数の組 (i,j,k)(i,j,k) であって ineqj,ineqk,jneqki\\neq j, i\\neq k, j\\neq k となるものを選ぶ.
  • その後,xix_ixi+3x_i+3xjx_jxj+5x_j+5xkx_kxk+7x_k+7 で同時に置き換える.

あなたの目的は,x1=x2=x3x_1=x_2=x_3 が成り立つようにすることです.このことが可能であるか否かを判定してください.可能な場合には,それを達成するための最小の操作回数を出力してください.

TT 個のテストケースが与えられるので,それぞれについて答えを求めてください.

制約

  • 1leqTleq2times1051\\leq T\\leq 2\\times 10^5
  • 1leqx1,x2,x3leq1091\\leq x_1, x_2, x_3 \\leq 10^9

入力

入力は以下の形式で標準入力から与えられます.

TT textcase1\\text{case}_1 vdots\\vdots textcaseT\\text{case}_T

各テストケースは以下の形式で与えられます.

x1x_1 x2x_2 x3x_3

出力

TT 行出力してください.ii 行目には ii 番目のテストケースについて,次の値を出力してください.

  • x1=x2=x3x_1=x_2=x_3 が成り立つようにすることが可能ならば,それを達成するための最小の操作回数.
  • x1=x2=x3x_1=x_2=x_3 が成り立つようにすることが不可能ならば,\-1\-1

入力例 1

4
2 8 8
1 1 1
5 5 10
10 100 1000

出力例 1

2
0
-1
315

ひとつめのテストケースについて,次のように操作を行うことで x1=x2=x3x_1=x_2=x_3 が成り立つようにできます.

  • (i,j,k)=(3,2,1)(i,j,k) = (3,2,1) として操作を行う.(x1,x2,x3)(x_1,x_2,x_3)(9,13,11)(9,13,11) に置き換わる.
  • (i,j,k)=(2,3,1)(i,j,k) = (2,3,1) として操作を行う.(x1,x2,x3)(x_1,x_2,x_3)(16,16,16)(16,16,16) に置き換わる.