#arc135e. [arc135_e]Sequence of Multiples

[arc135_e]Sequence of Multiples

Problem Statement

You are given integers NN and XX. Assume that an integer sequence A=(A1,ldots,AN)A = (A_1, \\ldots, A_N) satisfies all of the conditions below.

  • A1=XA_1 = X.
  • For every ii (1leqileqN1\\leq i\\leq N), AiA_i is a multiple of ii.
  • AA is strictly increasing. In other words, A1<cdots<ANA_1 < \\cdots < A_N holds.

Find the minimum possible value of sumi=1NAi\\sum_{i=1}^N A_i, modulo 998244353998244353.

There are TT test cases, each of which should be solved.

Constraints

  • 1leqTleq101\\leq T\\leq 10
  • 1leqNleq10181\\leq N \\leq 10^{18}
  • 1leqXleq10181\\leq X \\leq 10^{18}

Input

Input is given from Standard Input from the following format:

TT textcase1\\text{case}_1 vdots\\vdots textcaseT\\text{case}_T

Each case is in the following format:

NN XX

Output

Print TT lines. The ii-th line should contain the answer for textcasei\\text{case}_i.


Sample Input 1

5
5 100
1 10
10 1
1000000000000000000 1
100 100

Sample Output 1

525
10
55
75433847
61074

Here is a sequence AA that minimizes sumi=1NAi\\sum_{i=1}^N A_i for each of the first three test cases.

  • The first test case: A=(100,102,105,108,110)A = (100, 102, 105, 108, 110).
  • The second test case: A=(10)A = (10).
  • The third test case: A=(1,2,3,4,5,6,7,8,9,10)A = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).