#arc129b. [arc129_b]Range Point Distance

[arc129_b]Range Point Distance

Problem Statement

For integers ll, rr, and xx (lleqrl \\leq r), let us define dist(l,r,x)dist(l,r,x) as follows.

  • If x<lx<l: dist(l,r,x)=lxdist(l,r,x)=l-x
  • If lleqxleqrl \\leq x \\leq r: dist(l,r,x)=0dist(l,r,x)=0
  • If r<xr<x: dist(l,r,x)=xrdist(l,r,x)=x-r

You are given NN pairs of integers, the ii-th of which is (Li,Ri)(L_i,R_i). For each k=1,2,cdots,Nk=1,2,\\cdots,N, solve the following problem.

  • Let us choose an integer xx freely and compute $\\max(dist(L_1,R_1,x),dist(L_2,R_2,x),\\cdots,dist(L_k,R_k,x))$. Find the minimum possible value of this.

Constraints

  • 1leqNleq2times1051 \\leq N \\leq 2 \\times 10^5
  • 1leqLileqRileq1091 \\leq L_i \\leq R_i \\leq 10^9
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN L1L_1 R1R_1 L2L_2 R2R_2 vdots\\vdots LNL_N RNR_N

Output

Print the answers for k=1,2,cdots,Nk=1,2,\\cdots,N in this order.


Sample Input 1

3
1 3
2 4
5 6

Sample Output 1

0
0
1
  • For k=1k=1, an optimal choice is x=1x=1.
  • For k=2k=2, an optimal choice is x=3x=3.
  • For k=3k=3, an optimal choice is x=4x=4.

Sample Input 2

10
64 96
30 78
52 61
18 28
9 34
42 86
11 49
1 79
13 59
70 95

Sample Output 2

0
0
2
18
18
18
18
18
18
21