#arc126f. [arc126_f]Affine Sort

[arc126_f]Affine Sort

Problem Statement

Given is a sequence of NN positive integers X=(X1,X2,ldots,XN)X = (X_1, X_2, \\ldots, X_N).

For a positive integer KK, let f(K)f(K) be the number of triples of integers (a,b,c)(a,b,c) that satisfy all of the following conditions.

  • 1leqcleqK1\\leq c \\leq K.
  • 0leqa<c0\\leq a < c and 0leqb<c0\\leq b < c.
  • For each ii, let YiY_i be the remainder when aXi+baX_i + b is divided by cc. Then, Y1<Y2<cdots<YNY_1 < Y_2 < \\cdots < Y_N holds.

It can be proved that the limit $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3}$ exists. Find this value modulo 998244353998244353 (see Notes).

Notes

We can prove that the limit in question is always a rational number. Additionally, under the Constraints of this problem, when that number is represented as fracPQ\\frac{P}{Q} using two coprime integers PP and QQ, we can prove that there is a unique integer RR such that RtimesQequivPpmod998244353R\\times Q\\equiv P\\pmod{998244353} and 0leqR<9982443530\\leq R < 998244353. Find this RR.

Constraints

  • 2leqNleq1032\\leq N\\leq 10^3
  • XiX_i are positive integers such that sumi=1NXileq5times105\\sum_{i=1}^N X_i \\leq 5\\times 10^5.
  • XineqXjX_i\\neq X_j if ineqji\\neq j.

Input

Input is given from Standard Input in the following format:

NN X1X_1 X2X_2 ldots\\ldots XNX_N

Output

Print $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3}$ modulo 998244353998244353.


Sample Input 1

3
3 1 2

Sample Output 1

291154603
  • For example, when (a,b,c)=(3,5,7)(a,b,c) = (3,5,7), we have Y1=0Y_1 = 0, Y2=1Y_2 = 1, Y3=4Y_3 = 4, which satisfy Y1<Y2<Y3Y_1 < Y_2 < Y_3.
  • We have f(1)=0f(1) = 0, f(2)=0f(2) = 0, f(3)=1f(3) = 1, f(4)=2f(4) = 2, f(5)=5f(5) = 5.
  • We have $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3} = \\frac{1}{24}$.

Sample Input 2

3
5 9 2

Sample Output 2

832860616

We have $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3} = \\frac{55}{1008}$ .


Sample Input 3

2
2 3

Sample Output 3

166374059

We have $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3} = \\frac{1}{6}$.


Sample Input 4

4
4 5 3 2

Sample Output 4

0

We have $\\displaystyle \\lim_{K\\to\\infty} \\frac{f(K)}{K^3} = 0$.