#arc106d. [arc106_d]Powers

[arc106_d]Powers

Problem Statement

Given are integer sequence of length NN, A=(A1,A2,cdots,AN)A = (A_1, A_2, \\cdots, A_N), and an integer KK.

For each XX such that 1leXleK1 \\le X \\le K, find the following value:

$\\left(\\displaystyle \\sum_{L=1}^{N-1} \\sum_{R=L+1}^{N} (A_L+A_R)^X\\right) \\bmod 998244353$

Constraints

  • All values in input are integers.
  • 2leNle2times1052 \\le N \\le 2 \\times 10^5
  • 1leKle3001 \\le K \\le 300
  • 1leAile1081 \\le A_i \\le 10^8

Input

Input is given from Standard Input in the following format:

NN KK A1A_1 A2A_2 cdots\\cdots ANA_N

Output

Print KK lines.

The XX-th line should contain the value $\\left(\\displaystyle \\sum_{L=1}^{N-1} \\sum_{R=L+1}^{N} (A_L+A_R)^X \\right) \\bmod 998244353$.


Sample Input 1

3 3
1 2 3

Sample Output 1

12
50
216

In the 11-st line, we should print (1+2)1+(1+3)1+(2+3)1=3+4+5=12(1+2)^1 + (1+3)^1 + (2+3)^1 = 3 + 4 + 5 = 12.

In the 22-nd line, we should print (1+2)2+(1+3)2+(2+3)2=9+16+25=50(1+2)^2 + (1+3)^2 + (2+3)^2 = 9 + 16 + 25 = 50.

In the 33-rd line, we should print (1+2)3+(1+3)3+(2+3)3=27+64+125=216(1+2)^3 + (1+3)^3 + (2+3)^3 = 27 + 64 + 125 = 216.


Sample Input 2

10 10
1 1 1 1 1 1 1 1 1 1

Sample Output 2

90
180
360
720
1440
2880
5760
11520
23040
46080

Sample Input 3

2 5
1234 5678

Sample Output 3

6912
47775744
805306038
64822328
838460992

Be sure to print the sum modulo 998244353998244353.