#arc090d. [arc090_d]Number of Digits

[arc090_d]Number of Digits

Problem Statement

For a positive integer nn, let us define f(n)f(n) as the number of digits in base 1010.

You are given an integer SS. Count the number of the pairs of positive integers (l,r)(l, r) (lleqrl \\leq r) such that f(l)+f(l+1)+...+f(r)=Sf(l) + f(l + 1) + ... + f(r) = S, and find the count modulo 109+710^9 + 7.

Constraints

  • 1leqSleq1081 \\leq S \\leq 10^8

Input

Input is given from Standard Input in the following format:

SS

Output

Print the answer.


Sample Input 1

1

Sample Output 1

9

There are nine pairs (l,r)(l, r) that satisfies the condition: (1,1)(1, 1), (2,2)(2, 2), ......, (9,9)(9, 9).


Sample Input 2

2

Sample Output 2

98

There are 9898 pairs (l,r)(l, r) that satisfies the condition, such as (1,2)(1, 2) and (33,33)(33, 33).


Sample Input 3

123

Sample Output 3

460191684

Sample Input 4

36018

Sample Output 4

966522825

Sample Input 5

1000

Sample Output 5

184984484