#arc041b. [arc041_b]アメーバ

[arc041_b]アメーバ

問題文

NN マス、横 MM マスの盤面がある。 上から ii (1iN1≦i≦N) マス目、左から jj (1jM1≦j≦M) マス目の位置を (i,j)(i,j) と表す。

はじめ、マス (i,j)(i,j) には aija_{ij} 匹のアメーバがいた。 ただし、盤面の端にアメーバはいなかった。 すなわち、i=1,Ni=1,N または j=1,Mj=1,M ならば aij=0a_{ij}=0 である。

高橋君が大声を出すと、アメーバたちは驚いてそれぞれ次の行動をとった。

  • 11 匹のアメーバが 44 匹に分裂し、上下左右のマスへ 11 匹ずつ移動した。

その結果、マス (i,j)(i,j) には bijb_{ij} 匹のアメーバがいることになった。

今のアメーバの配置 (bij)(b_{ij}) が与えられるので、はじめのアメーバの配置 (aij)(a_{ij})11 つ求めよ。 ただし、(aij)(a_{ij}) は少なくとも 11 つ存在する。


入力

入力は以下の形式で標準入力から与えられる。

NN MM b11b_{11}b12b_{12}....b1Mb_{1M} b21b_{21}b22b_{22}....b2Mb_{2M} :: bN1b_{N1}bN2b_{N2}....bNMb_{NM}

  • 11 行目には、盤面の縦のマス数 NN (3N5003≦N≦500) と横のマス数 MM (3M5003≦M≦500) が空白区切りで与えられる。
  • 22 行目からの NN 行には、今のアメーバの配置が与えられる。このうち ii 行目の jj 文字目の数字が bijb_{ij} (0bij90≦b_{ij}≦9) を表す。

出力

はじめのアメーバの配置を 1 つ、以下の形式で NN 行に出力せよ。 ただし、ii 行目の jj 文字目の数字が aija_{ij} を表す。 出力の末尾に改行を入れること。

a11a_{11}a12a_{12}....a1Ma_{1M} a21a_{21}a22a_{22}....a2Ma_{2M} :: aN1a_{N1}aN2a_{N2}....aNMa_{NM}


入力例1


3 3
010
101
010

出力例1


000
010
000

入力例2


3 4
0230
2323
0230

出力例2


0000
0230
0000

入力例3


5 5
00100
03040
20903
05060
00300

出力例3


00000
00100
02030
00300
00000