#agc059f. [agc059_f]LIDS

[agc059_f]LIDS

Problem Statement

Given N,pos,valN, pos, val, find the number of permutations P=(P1,P2,ldots,PN)P=(P_1, P_2, \\ldots, P_N) of (1,2,ldots,N)(1,2,\\ldots,N) that satisfy all of the following conditions, modulo 109+710^9+7:

  • LIS(P)+LDS(P)=N+1LIS(P) + LDS(P) = N+1
  • Ppos=valP_{pos} = val

Here, LIS(P)LIS(P) denotes the length of the longest increasing subsequence of PP, and LDS(P)LDS(P) denotes the length of the longest decreasing subsequence of PP.

Constraints

  • 1leNle5cdot1061 \\le N \\le 5\\cdot 10^6
  • 1lepos,valleN1 \\le pos, val \\le N
  • All values in the input are integers.

Input

Input is given from Standard Input in the following format:

NN pospos valval

Output

Print the answer.


Sample Input 1

3 2 2

Sample Output 1

2

The following permutations satisfy the conditions: (1,2,3),(3,2,1)(1, 2, 3), (3, 2, 1).


Sample Input 2

4 1 1

Sample Output 2

6

The following permutations satisfy the conditions: $(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)$.


Sample Input 3

5 2 5

Sample Output 3

11

Sample Input 4

2022 69 420

Sample Output 4

128873576