#agc057b. [agc057_b]2A + x

[agc057_b]2A + x

Problem Statement

You are given a sequence A=(A1,A2,ldots,AN)A = (A_1, A_2, \\ldots, A_N) of positive integers and a positive integer XX. You can perform the operation below any number of times, possibly zero:

  • Choose an index ii (1leqileqN1\\leq i\\leq N) and a non-negative integer xx such that 0leqxleqX0\\leq x\\leq X. Change AiA_i to 2Ai+x2A_i+x.

Find the smallest possible value of $\\max\\{A_1,A_2,\\ldots,A_N\\}-\\min\\{A_1,A_2,\\ldots,A_N\\}$ after your operations.

Constraints

  • 2leqNleq1052\\leq N\\leq 10^5
  • 1leqXleq1091\\leq X\\leq 10^9
  • 1leqAileq1091\\leq A_i\\leq 10^9

Input

Input is given from Standard Input in the following format:

NN XX A1A_1 A2A_2 ldots\\ldots ANA_N

Output

Print the smallest possible value of $\\max\\{A_1,A_2,\\ldots,A_N\\}-\\min\\{A_1,A_2,\\ldots,A_N\\}$ after your operations.


Sample Input 1

4 2
5 8 12 20

Sample Output 1

6

Let (i,x)(i, x) denote an operation that changes AiA_i to 2Ai+x2A_i+x. An optimal sequence of operations is

  • (1,0)(1,0), (1,1)(1,1), (2,2)(2,2), (3,0)(3,0)

which yields A=(21,18,24,20)A = (21, 18, 24, 20), achieving $\\max\\{A_1,A_2,A_3,A_4\\}-\\min\\{A_1,A_2,A_3,A_4\\} = 6$.


Sample Input 2

4 5
24 25 26 27

Sample Output 2

0

An optimal sequence of operations is

  • (1,5)(1,5), (1,5)(1,5), (2,5)(2,5), (2,1)(2,1), (3,2)(3,2), (3,3)(3,3), (4,0)(4,0), (4,3)(4,3)

which yields A=(111,111,111,111)A = (111,111,111,111), achieving $\\max\\{A_1,A_2,A_3,A_4\\}-\\min\\{A_1,A_2,A_3,A_4\\} = 0$.


Sample Input 3

4 1
24 25 26 27

Sample Output 3

3

Performing no operations achieves $\\max\\{A_1,A_2,A_3,A_4\\}-\\min\\{A_1,A_2,A_3,A_4\\} = 3$.


Sample Input 4

10 5
39 23 3 7 16 19 40 16 33 6

Sample Output 4

13