#abc306f. [abc306_f]Merge Sets

[abc306_f]Merge Sets

Problem Statement

For two sets of integers, AA and BB, such that AcapB=emptysetA \\cap B = \\emptyset, we define f(A,B)f(A,B) as follows.

  • Let C=(C1,C2,dots,CA+B)C=(C_1,C_2,\\dots,C_{|A|+|B|}) be a sequence consisting of the elements of AcupBA \\cup B, sorted in ascending order.
  • Take k1,k2,dots,kAk_1,k_2,\\dots,k_{|A|} such that $A=\\lbrace C_{k_1},C_{k_2},\\dots,C_{k_{|A|}}\\rbrace$. Then, let displaystylef(A,B)=sumi=1Aki\\displaystyle f(A,B)=\\sum_{i=1}^{|A|} k_i.

For example, if A=lbrace1,3rbraceA=\\lbrace 1,3\\rbrace and B=lbrace2,8rbraceB=\\lbrace 2,8\\rbrace, then C=(1,2,3,8)C=(1,2,3,8), so A=lbraceC1,C3rbraceA=\\lbrace C_1,C_3\\rbrace; thus, f(A,B)=1+3=4f(A,B)=1+3=4.

We have NN sets of integers, S1,S2dots,SNS_1,S_2\\dots,S_N, each of which has MM elements. For each i(1leqileqN)i\\ (1 \\leq i \\leq N), $S_i = \\lbrace A_{i,1},A_{i,2},\\dots,A_{i,M}\\rbrace$. Here, it is guaranteed that SicapSj=emptyset(ineqj)S_i \\cap S_j = \\emptyset\\ (i \\neq j).

Find $\\displaystyle \\sum_{1\\leq i<j \\leq N} f(S_i, S_j)$.

Constraints

  • 1leqNleq1041\\leq N \\leq 10^4
  • 1leqMleq1021\\leq M \\leq 10^2
  • 1leqAi,jleq1091\\leq A_{i,j} \\leq 10^9
  • If i1neqi2i_1 \\neq i_2 or j1neqj2j_1 \\neq j_2, then Ai1,j1neqAi2,j2A_{i_1,j_1} \\neq A_{i_2,j_2}.
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

NN MM A1,1A_{1,1} A1,2A_{1,2} dots\\dots A1,MA_{1,M} vdots\\vdots AN,1A_{N,1} AN,2A_{N,2} dots\\dots AN,MA_{N,M}

Output

Print the answer as an integer.


Sample Input 1

3 2
1 3
2 8
4 6

Sample Output 1

12

S1S_1 and S2S_2 respectively coincide with AA and BB exemplified in the problem statement, and f(S1,S2)=1+3=4f(S_1,S_2)=1+3=4. Since f(S1,S3)=1+2=3f(S_1,S_3)=1+2=3 and f(S2,S3)=1+4=5f(S_2,S_3)=1+4=5, the answer is 4+3+5=124+3+5=12.


Sample Input 2

1 1
306

Sample Output 2

0

Sample Input 3

4 4
155374934 164163676 576823355 954291757
797829355 404011431 353195922 138996221
191890310 782177068 818008580 384836991
160449218 545531545 840594328 501899080

Sample Output 3

102