#abc296c. [abc296_c]Gap Existence

[abc296_c]Gap Existence

Problem Statement

You are given a sequence of NN numbers: A=(A1,ldots,AN)A=(A_1,\\ldots,A_N).

Determine whether there is a pair (i,j)(i,j) with 1leqi,jleqN1\\leq i,j \\leq N such that AiAj=XA_i-A_j=X.

Constraints

  • 2leqNleq2times1052 \\leq N \\leq 2\\times 10^5
  • \-109leqAileq109\-10^9 \\leq A_i \\leq 10^9
  • \-109leqXleq109\-10^9 \\leq X \\leq 10^9
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

NN XX A1A_1 ldots\\ldots ANA_N

Output

Print Yes if there is a pair (i,j)(i,j) with 1leqi,jleqN1\\leq i,j \\leq N such that AiAj=XA_i-A_j=X, and No otherwise.


Sample Input 1

6 5
3 1 4 1 5 9

Sample Output 1

Yes

We have A6A3=94=5A_6-A_3=9-4=5.


Sample Input 2

6 -4
-2 -7 -1 -8 -2 -8

Sample Output 2

No

There is no pair (i,j)(i,j) such that AiAj=4A_i-A_j=-4.


Sample Input 3

2 0
141421356 17320508

Sample Output 3

Yes

We have A1A1=0A_1-A_1=0.