#abc275d. [abc275_d]Yet Another Recursive Function
[abc275_d]Yet Another Recursive Function
Problem Statement
A function defined for non-negative integers satisfies the following conditions.
- .
- $f(k) = f(\\lfloor \\frac{k}{2}\\rfloor) + f(\\lfloor \\frac{k}{3}\\rfloor)$ for any positive integer .
Here, denotes the value of rounded down to an integer.
Find .
Constraints
- is an integer satisfying .
Input
The input is given from Standard Input in the following format:
Output
Print the answer.
Sample Input 1
2
Sample Output 1
3
We have $f(2) = f(\\lfloor \\frac{2}{2}\\rfloor) + f(\\lfloor \\frac{2}{3}\\rfloor) = f(1) + f(0) =(f(\\lfloor \\frac{1}{2}\\rfloor) + f(\\lfloor \\frac{1}{3}\\rfloor)) + f(0) =(f(0)+f(0)) + f(0)= 3$.
Sample Input 2
0
Sample Output 2
1
Sample Input 3
100
Sample Output 3
55