#abc275d. [abc275_d]Yet Another Recursive Function

[abc275_d]Yet Another Recursive Function

Problem Statement

A function f(x)f(x) defined for non-negative integers xx satisfies the following conditions.

  • f(0)=1f(0) = 1.
  • $f(k) = f(\\lfloor \\frac{k}{2}\\rfloor) + f(\\lfloor \\frac{k}{3}\\rfloor)$ for any positive integer kk.

Here, lfloorArfloor\\lfloor A \\rfloor denotes the value of AA rounded down to an integer.

Find f(N)f(N).

Constraints

  • NN is an integer satisfying 0leNle10180 \\le N \\le 10^{18}.

Input

The input is given from Standard Input in the following format:

NN

Output

Print the answer.


Sample Input 1

2

Sample Output 1

3

We have $f(2) = f(\\lfloor \\frac{2}{2}\\rfloor) + f(\\lfloor \\frac{2}{3}\\rfloor) = f(1) + f(0) =(f(\\lfloor \\frac{1}{2}\\rfloor) + f(\\lfloor \\frac{1}{3}\\rfloor)) + f(0) =(f(0)+f(0)) + f(0)= 3$.


Sample Input 2

0

Sample Output 2

1

Sample Input 3

100

Sample Output 3

55