#abc265e. [abc265_e]Warp

[abc265_e]Warp

Problem Statement

Takahashi is at the origin of a two-dimensional plane.
Takahashi will repeat teleporting NN times. In each teleportation, he makes one of the following moves:

  • Move from the current coordinates (x,y)(x,y) to (x+A,y+B)(x+A,y+B)
  • Move from the current coordinates (x,y)(x,y) to (x+C,y+D)(x+C,y+D)
  • Move from the current coordinates (x,y)(x,y) to (x+E,y+F)(x+E,y+F)

There are obstacles on MM points (X1,Y1),ldots,(XM,YM)(X_1,Y_1),\\ldots,(X_M,Y_M) on the plane; he cannot teleport to these coordinates.

How many paths are there resulting from the NN teleportations? Find the count modulo 998244353998244353.

Constraints

  • 1leqNleq3001 \\leq N \\leq 300
  • 0leqMleq1050 \\leq M \\leq 10^5
  • \-109leqA,B,C,D,E,Fleq109\-10^9 \\leq A,B,C,D,E,F \\leq 10^9
  • (A,B)(A,B), (C,D)(C,D), and (E,F)(E,F) are distinct.
  • \-109leqXi,Yileq109\-10^9 \\leq X_i,Y_i \\leq 10^9
  • (Xi,Yi)neq(0,0)(X_i,Y_i)\\neq(0,0)
  • (Xi,Yi)(X_i,Y_i) are distinct.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

NN MM AA BB CC DD EE FF X1X_1 Y1Y_1 X2X_2 Y2Y_2 vdots\\vdots XMX_M YMY_M

Output

Print the answer.


Sample Input 1

2 2
1 1 1 2 1 3
1 2
2 2

Sample Output 1

5

The following 55 paths are possible:

  • (0,0)to(1,1)to(2,3)(0,0)\\to(1,1)\\to(2,3)
  • (0,0)to(1,1)to(2,4)(0,0)\\to(1,1)\\to(2,4)
  • (0,0)to(1,3)to(2,4)(0,0)\\to(1,3)\\to(2,4)
  • (0,0)to(1,3)to(2,5)(0,0)\\to(1,3)\\to(2,5)
  • (0,0)to(1,3)to(2,6)(0,0)\\to(1,3)\\to(2,6)

Sample Input 2

10 3
-1000000000 -1000000000 1000000000 1000000000 -1000000000 1000000000
-1000000000 -1000000000
1000000000 1000000000
-1000000000 1000000000

Sample Output 2

0

Sample Input 3

300 0
0 0 1 0 0 1

Sample Output 3

292172978